Используя приемник VIMOS на Очень Большом Телескопе (VLT) Европейской южной обсерватории (ESO), международная группа астрономов обнаружила в ранней Вселенной колоссальное образование: прото-сверхскопление галактик. Объект, получивший название Гиперион, был открыт в результате новых измерений и тщательных исследований архивных данных. Это одна из самых крупных и массивных структур, обнаруженных на сегодняшний день на столь большом расстоянии от нас и столь раннем этапе развития Вселенной — спустя всего 2,3 миллиарда лет после Большого Взрыва.
«Впервые столь огромное образование найдено на столь большом красном смещении – всего чуть больше двух миллиардов лет после Большого Взрыва. Обычно такие гигантские структуры встречаются на значительно более низких красных смещениях, а значит, у Вселенной было гораздо больше времени для того, чтобы столь огромные объекты могли успеть сформироваться и эволюционировать. Увидеть что-то подобное в эпоху, когда Вселенная была относительно молодой, стало полной неожиданностью!» – рассказывает Ольга Куччиати, ведущий автор исследования из Национального института астрофизики (INAF) в Болонье (Италия).
Вычисленная масса прото-сверхскопления оказалась более миллиона миллиардов солнечных масс. Это значение того же порядка, что и масса крупнейших структур, наблюдаемых в современной Вселенной, но обнаружение такого объекта в ранней Вселенной оказалось для астрономов неожиданным.
Гиперион расположен в поле COSMOS в созвездии Секстанта. Он был обнаружен в результате анализа огромного количества данных, полученных с приемником VIMOS в ходе ультра-глубокого обозрения неба VIMOS Ultra-deep Survey, выполненного Оливье Лефевром из Марсельского университета (Франция). Обзор VIMOS Ultra-Deep Survey позволил получить уникальный результат: трехмерную карту распределения более 10 000 галактик ранней Вселенной.
Исследователям удалось установить, что Гиперион является весьма сложной структурой: скопление содержит по крайней мере семь областей с высокой плотностью галактик, соединенных волокнами, также состоящими из галактик. Размер сверхскопления сравним с размерами близких к нам подобных объектов, хотя по структуре оно очень от них отличается.
«Сверхскопления, более близкие к нашей Галактике, обычно имеют гораздо большее распределение концентрации масс и вполне ясные структурные особенности. А в Гиперионе масса распределена относительно равномерно в ряде соединенных друг с другом полостей, населенных довольно аморфными ассоциациями галактик», – пояснил Бриан Лемо, соавтор исследования из Калифорнийского университета (США).
Это различие, скорее всего, объясняется тем, что у близлежащих сверхскоплений были миллиарды лет для того, чтобы силы гравитации могли собрать вещество в более плотные области. У значительно более молодого Гипериона этот процесс действует на протяжении гораздо меньшего времени.
При таких размерах в столь раннюю эпоху истории Вселенной, Гиперион должен будет превратиться в что-то похожее на грандиозные структуры в близкой к нам локальной области Вселенной, такие, как сверхскопления, составляющие «Великую Стену Слоуна», или сверхскопление в Деве, к которому принадлежит и наш Млечный Путь.
«Понимание структуры и истории Гипериона и того, как это сверхскопление выглядит в сравнении с подобными более старыми формациями, может помочь нам понять, как Вселенная развивалась в прошлом и как она будет эволюционировать в будущем, а также позволит нам проверить некоторые модели образования сверхскоплений», – заключила Ольга Куччиати.
Стоит учитывать, что время от времени происходит корректировка орбиты Международной космической станции, поэтому долгосрочные прогнозы пролетов могут незначительно меняться. Мы обновляем набор элементов орбиты каждый час, чтобы предоставлять максимально точный расчет.
График отображает высоту объекта над горизонтом в градусах. Затененные области – наилучшая видимость; вертикальная пунктирная линия – текущее время.