↑ Наверх

«Атмосферный дисбаланс» поможет обнаружить жизнь на других планетах

Идея поиска атмосферного кислорода в качестве биосигнала существует уже давно, и это хорошая стратегия, однако биохимия его производства очень сложна и может оказаться редкой.

Вскоре космическому телескопу «James Webb» и другим телескопам будущих поколений понадобятся стратегии поиска признаков жизни на других планетах. Исследование Университета Вашингтона (США) дает простой и более перспективный подход к обнаружению жизни, не останавливаясь на одном кислороде.

Статья, опубликованная 24 января 2018 года в Science Advances, предлагает новый рецепт определения жизни на далеких планетах. «Идея поиска атмосферного кислорода в качестве биосигнала существует уже давно, и это хорошая стратегия, поскольку очень сложно произвести много кислорода без жизни. Но мы не хотим помещать все яйца в одну корзину. Даже если жизнь распространена в космосе, мы не знаем, всем ли ее формы создают кислород. Биохимия производства кислорода очень сложна и может оказаться редкой», – пояснил автор статьи Джошуа Криссансен-Тоттон, докторант Университета Вашингтона.

В новом исследовании рассматривается история жизни на Земле. Ученые определяют времена, когда атмосфера планеты содержала смесь газов, которые находятся вне равновесия и могут существовать только в присутствии живых организмов. Фактически, способность жизни производить большое количество кислорода произошла только в последней 1/8 истории Земли.

Рассмотрев более ранние периоды, исследователи определили новую комбинацию газов, доказывающую присутствие жизни: метан плюс углекислый газ минус окись углерода.

«Важно отыскать атмосферу достаточно насыщенную метаном и углекислым газом в мире, в котором есть жидкая вода на его поверхности, и подтвердить отсутствие угарного газа. Наше исследование показывает, что эта комбинация – абсолютный признак жизни. Особенно интересно, что наше предложение выполнимо и может привести к историческому открытию внеземной биосферы в недалеком будущем», – считает Дэвид Кэтлинг, профессор молекулярной физики Земли и космоса.

В статье рассматриваются все способы, с помощью которых планета может создавать метан: астероидные удары, выход газов из недр планеты, реакции каменистых пород с водой. Материал доказывает, что трудно производить много метана на скалистых планетах земного типа без участия живых организмов.

Если метан и двуокись углерода обнаружены вместе в условиях отсутствия угарного газа, такой химический дисбаланс сигнализирует о жизни. Углеродные атомы в двух молекулах представляют собой противоположные уровни окисления. Углекислый газ содержит столько молекул кислорода, сколько может, в то время как углерод в метане не содержит кислорода и вместо этого включает водород, химический противник кислорода.

«Окись углерода – это газ, который легко съедает микробы. Поэтому, если монооксид углерода присутствует в изобилии, это становится ключом к тому, что вы смотрите на планету, у которой нет биологии», – говорит Джошуа Крисансен-Тоттон.

Авторы согласны с тем, что идентификация кислорода – хороший способ поиска признаков жизни, но новая комбинация расширяет цели современных научных инструментов.

«Жизнь, производящая метан, использует простой обмен веществ. Она вездесуща и существует на протяжении большей части истории Земли. Она потенциально более распространена, чем жизнь, производящая кислород. Это определенно то, что мы должны искать, когда появятся новые телескопы», – заключил автор научной работы Джошуа Крисансен-Тоттон.

Видимые пролеты
Международной космической станции

Стоит учитывать, что время от времени происходит корректировка орбиты Международной космической станции, поэтому долгосрочные прогнозы пролетов могут незначительно меняться. Мы обновляем набор элементов орбиты каждый час, чтобы предоставлять максимально точный расчет.

Текущее расстояние планет от Солнца и Земли и их видимость на небе в течение суток

График отображает высоту объекта над горизонтом в градусах. Затененные области – наилучшая видимость; вертикальная пунктирная линия – текущее время.