Используя японский суперкомпьютер Фугаку, расположенный в Центре вычислительных наук Института физико-химических исследований (Кобе, Япония), астрофизикам впервые удалось точно смоделировать тепловую конвекцию и магнитное поле в недрах Солнца, которые в результате воспроизвели его дифференциальное вращение. Достигнутый успех является важным шагом к разгадке самой большой тайны нашей звезды – 11-летнего цикла. Результаты исследования представлены в журнале Nature Astronomy.
«В отличие от Земли, Солнце обладает различными периодами вращения в разных широтах, то есть «дифференциальным вращением». Этот факт известен 1630 года и сегодня мы знаем, что солнечный экватор вращается с периодом 25 земных суток, а полярные области – 30 земных суток. Считается, что это свойство играет важную роль в образовании солнечных пятен и организации циклов солнечной активности», – рассказывает Хидэюки Хотта, ведущий автор исследования из Университета Тиба (Япония).
Согласно текущим представлениям, энергия, генерируемая ядерным синтезом в солнечном ядре, переносится к поверхности излучением в так называемой «зоне лучистого переноса», которая простирается до примерно 70 процентов радиуса Солнца. Затем, во внешнем регионе – «конвективной зоне», – энергия транспортируется уже тепловой конвекцией. По мнению ученых, именно это турбулентное движение приводит к созданию и поддержанию дифференциального вращения.
Однако предыдущие численные модели воссоздавали картину, обратную реальной – быстрый полюс и медленный экватор. Ученым не удавалось достигать дифференциального вращения Солнца даже в симуляциях с высоким разрешением, в частности, на японском суперкомпьютере K-computer с использованием 100 миллионов точек, так как им не хватало производительности, чтобы точно рассчитать турбулентную тепловую конвекцию. Эта проблема получила обозначение «конвективная головоломка», которая оставалась давней загадкой в физике Солнца.
«В попытках решить конвективную головоломку мы провели моделирование высокотурбулентных недр Солнца в конвективной зоне с беспрецедентно высоким разрешением, достижимым только на суперкомпьютере Фугаку. В симуляции использовались 5,4 миллиарда точек, и, в результате, нам удалось воспроизвести дифференциальное вращение с быстрым экватором и медленными полюсами без каких-либо дополнительных манипуляций», – отметил Хидэюки Хотта.
На основе предыдущих расчетов предполагалось, что в зоне конвекции магнитная энергия меньше турбулентной и играет второстепенную роль. Однако теперь взгляд на недра нашей звезды изменился – модель показала сильные магнитные поля, энергия которых более чем в два раза превышает энергию турбулентности. Кроме этого, ученые выяснили, что магнитное поле играет важную роль в создании и поддержании дифференциального вращения Солнца.
«Мы не ожидали, что сможем решить многолетнюю проблему так быстро, и были удивлены результатом. Теперь мы готовы бросить вызов загадке 11-летнего цикла», – заключил Хидэюки Хотта.
Стоит учитывать, что время от времени происходит корректировка орбиты Международной космической станции, поэтому долгосрочные прогнозы пролетов могут незначительно меняться. Мы обновляем набор элементов орбиты каждый час, чтобы предоставлять максимально точный расчет.
График отображает высоту объекта над горизонтом в градусах. Затененные области – наилучшая видимость; вертикальная пунктирная линия – текущее время.