Москва

7.3K

Like Love Haha Wow Sad
1

Впервые зафиксированы гравитационные волны от столкновения нейтронных звезд

В результате этой грандиозной космической катастрофы, которая давно уже предсказывалась теоретиками, в пространство выбрасываются тяжелые элементы, такие как золото и платина.

17 августа 2017 года лазерно-интерферометрическая гравитационно-волновая обсерватория LIGO и франко-итальянский детектор гравитационных волн VIRGO впервые зафиксировали гравитационные волны от столкновения двух нейтронных звезд. Примерно через две секунды после этого космический гамма-телескоп NASA «Fermi» и астрофизическая гамма-лаборатория ESA «INTEGRAL» наблюдали короткий гамма-всплеск GRB170817A в той же области неба.

«Ученому редко выпадает случай стать свидетелем начала новой эры в науке. Это – один из таких случаев!» – сказала Елена Пиан из Астрофизического института Италии, автор одной из публикуемых в Nature статей.

Что такое гравитационные волны?

Гравитационные волны, создающиеся движущимися массами, являются маркерами самых жестоких событий во Вселенной и возникают при столкновении плотных объектов, таких как черные дыры или нейтронные звезды.

Их существование было предсказано еще в 1916 году Альбертом Эйнштейном в Общей Теории Относительности. Однако, зафиксировать гравитационные волны удалось только спустя сто лет, поскольку только самые мощные из этих волн, обусловленные быстрыми изменениями скорости очень массивных объектов, могут быть зарегистрированы современными приемниками.

До сегодняшнего дня было поймано 4 сигнала гравитационных волн: трижды LIGO в одиночку фиксировал «рябь» пространства-времени, а 14 сентября 2017 года впервые гравитационные волны были пойманы сразу тремя детекторами (двумя детекторами LIGO в США и одним детектор VIRGO в Европе).

У четырех предыдущих событий есть одно общее – все они вызваны слиянием пар черных дыр, вследствие чего увидеть их источник невозможно. Теперь все изменилось.

Как обсерватории по всему миру «ловили» источник гравитационных волн

Совместная работа LIGO и VIRGO позволила позиционировать источник гравитационных волн в пределах обширного участка южного неба размером в несколько сотен дисков полной Луны, содержащего миллионы звезд. Более 70 обсерваторий по всему миру, а также космический телескоп NASA «Hubble» принялись наблюдать этот район неба в поисках новых источников излучения.

Первое сообщение об обнаружении нового источника света поступило спустя 11 часов с метрового телескопа «Swope». Оказалось, что объект находился очень близко к линзовидной галактике NGC 4993 в созвездии Гидры. Почти в то же время тот же источник был зарегистрирован телескопом Европейской южной обсерватории ESO «VISTA» в инфракрасных лучах. По мере того, как ночь продвигалась по земному шару на запад, объект наблюдался на Гавайских островах телескопами «Pan-STARRS» и «Subaru», причем была отмечена его быстрая эволюция.

Оценки расстояния до объекта, полученные как из гравитационно-волновых данных, так и из других наблюдений, дали согласующиеся результаты: GW170817 находится на том же расстоянии от Земли, что и галактика NGC 4993, то есть в 130 миллионах световых лет. Таким образом, это ближайший к нам из всех обнаруженных источников гравитационных волн и один из ближайших когда-либо наблюдавшихся источников гамма-всплесков.

Загадочная килоновая

После того, как массивная звезда взрывается в виде сверхновой, на ее месте остается сверхплотное сколлапсировавшее ядро: нейтронная звезда. Слияниями нейтронных звезд в основном объясняются и короткие гамма-всплески. Считается, что это событие сопровождается взрывом в тысячу раз более ярким, чем типичная новая – так называемой килоновой.

«Это ни на что не похоже! Объект очень быстро стал невероятно ярким, а затем начал стремительно исчезать, переходя от синего цвета к красному. Это невероятно!» – рассказывает Райан Фоули из Калифорнийского университета в Санта-Крузе (США).

Почти одновременная регистрация гравитационных волн и гамма-лучей от GW170817 породила надежду на то, что это и есть давно разыскиваемая килоновая. Подробные наблюдения на инструментах ESO и космическом телескопе «Hubble» действительно обнаружили у этого объекта свойства очень близкие к теоретическим предсказаниям, сделанным более 30 лет назад. Таким образом, получено первое наблюдательное подтверждение существования килоновых.

Пока неясно, какой объект породило слияние двух нейтронных звезд: черную дыру или новую нейтронную звезду. Дальнейший анализ данных должен ответить на этот вопрос.

В результате слияния двух нейтронных звезд и взрыва килоновой происходит выброс радиоактивных тяжелых химических элементов, разлетающихся со скоростью в одну пятую скорости света. В течение нескольких дней – быстрее, чем при любом другом звездном взрыве – цвет килоновой меняется от ярко-голубого к очень красному.

«Данные, которые мы получили, великолепно согласуются с теорией. Это триумф теоретиков, подтверждение абсолютной реальности событий, зарегистрированных установками LIGO и VIRGO, и замечательное достижение ESO, которой удалось получить наблюдения килоновой», – рассказывает Стефано Ковино из Астрофизического института Италии, автор одной из публикуемых в Nature Astronomy статей.

Спектры, полученные инструментами на Очень большом телескопе ESO показывают присутствие цезия и теллура, выброшенных в пространство при слиянии нейтронных звезд. Эти и другие тяжелые элементы рассеиваются в космосе после взрывов килоновых. Таким образом, наблюдения указывают на формирование элементов тяжелее железа при ядерных реакциях в недрах сверхплотных звездных объектов. Этот процесс, называемый r-нуклеосинтезом, раньше был известен только в теории.

Важность открытия

Открытие ознаменовало рассвет новой эры в космологии: теперь мы можем не только слушать, но и видеть события, порождающие гравитационные волны! В краткосрочной перспективе анализ новых данных позволит ученым получить более точное представление о нейтронных звездах, а в будущем наблюдения подобных событий помогут объяснить продолжающееся расширение Вселенной, состав темной энергии, а также происхождение самых тяжелых элементов в космосе.

Исследования, описывающие открытие, представлены серией статей в журналах Nature, Nature Astronomy и Astrophysical Journal Letters.

Like Love Haha Wow Sad
1
Перейти ко всем новостям